

1) Introduction

My assignment is a system that allows a client to enter the weather data information they would like

and the server will display the information back to them. In terms of the implementation the client

entered nominated year dictates whether an XML document weather data or JSON document

weather will be handled. This implementation decision was made in the event where a year file 2016

had both 2016.XML and 2016.JSON (refer to loadData.js). Also, when loading data to the application

my assignments prioritize application security which is valid whenever data from external source is

being handled or used. The calculations were validated with both excel and my assignment 2

program In ICT283 which had the same calculations. Also, ICT283 program calculations were marked

as correct.

Assumption:

• Assume that for graph month(s) that has no data and is within the selected time frame the

month will be extrapolated meaning the value for the month with no data is assigned based

on extrapolation. However, if the graph month that has no data is at the first or last spot in

x-axis then extrapolation will obviously not occur

• Assume when a line (in data file) has a solar radiation that is not valid and a wind speed that

is valid don’t ignore the whole line just throw away the invalid solar radiation value and keep

the wind speed as part of the calculation

• Assume when a line (in data file) has a wind speed that is not valid and a solar radiation that

is valid don’t ignore the whole line just throw away the invalid wind speed value and keep

the solar radiation as part of the calculation

• Assume when date/time (in data file) for a line is invalid throw away the entire line

• Assume solar radiation and wind speed is rounded to two decimal places

• Assume sphinx url referred to in marking guide is in this format

o http://sphinx.murdoch.edu.au/~20010930/ICT375/2010.json

• Assume 0 wind speed is valid

2) XML OR JSON technologies and why used

My application can handle both XML and JSON documents. When client submits a search. The year

in which is selected will dictate where the server will handle a JSON document or XML document.

This decision can be seen in LoadDataFromWebsite(..) in loadData.js.

When a JSON document is determined to be handled the entire JSON file will be read

asynchronously from website URL first. When dealing with file operations especially large files,

asynchronous request are appropriate. In this case, it provides better user experience by keeping

user interface responsive and not frozen when reading the JSON file. This is seen in

LoadJSONFromWebsite(...) in loadData.js. Because the request is very large it is sent to server

through chunks. Once all chunks have been accumulated it will parse the JSON document into

Javascript object using built in JSON.parse(…). Similarly, if the JSON document from the website URL

is not reachable the JSON document stored locally is read asynchronously. This is seen in

LoadJSONFromLocal(..) in loadData.js. Once local JSON document is read it is is parsed into

JavaScript object using built in JSON.parse(…). The object is processed and transversed using dot

notation. This is illustrated in ExtractWindSpeeds(…) in windSpeedCalculation.js . Where for example

the windspeed property (ws) outlined in the JSON schema is used to retrieve the windspeed value.

This approach was selected because both the client side and server side will handle data and having

JSON for both makes it easier. Also, JSON format provides dot notation for accessing which is simple

since the JSON schema is not complex

When an XML document is determined to be handled the entire XML file will be read

asynchronously from website url first. This is done in LoadXMLFromWebsite(...) in loadData.js. The

XML data will be parsed using xml2js SAX library asynchronously. The parseString method in xml2js

will parse and process XML data to JSON format. This is illustrated in LoadXMLFromWebsite(..) in

loadData.js. In the event the XML document is unreachable on the website it reverts to local XML

document and the same process is followed. This approach was selected since it enables reusability

of functions such as GetSolarRadiation(…) and GetWindSpeed(…) in windSpeedCalculation.js and

solarRadiationCalculation.js respectively. Also allows the use of light weight easy to use JSON format

which allows for dot notation.

The disadvantage of taking and XML document and converting it to JSON format with xml2js SAX is

that it increased the load time. Reading a JSON document and converting JSON format is quite fast.

However, when it comes to the XML document the document needs to be converted JSON format by

a third-party library. This extra step adds extra time as opposed to reading XML document and

parsing XML data with your own parser. However, the extra load time is justified in that I could reuse

http://sphinx.murdoch.edu.au/~20010930/ICT375/2010.json

existing well tested code to process the JSON format for calculations. In addition, the xml2js parser is

well tested since it has been used widely for so long. Creating your own parser does not have the

benefit of being well tested or robust incase the XML format changes in which we would need to

modify our created parsers and test.

3) Detailed description of design

Search weather measurements

• index.html

o Provides the client form to submit new search to access weather information

• searchFormValidator.js

o Responsible for the client-side validation of index.html

o Ensures time-frame is valid meaning start month < end month, a year is a number,

and at least a display format and weather measurement is selected

o Provides client-side feedback when submission is not valid

o The importance of client-side validation is it provides feedback fast to the client and

avoids server being accessed on when it doesn’t need to be. Also calls the

ProcessSearchForm() in SearchFormFrontEnd.js if valid

• SearchFormFrontEnd.js

o Handles initiating the asynchronous JQuery AJAX post sending the client weather

measurement information request to the backend through request handler(s) in

order to receive the weather data from server. The follow functions encapsulate this

AJAX post-

▪ GetSolarRadiation(…), GetWindSpeed(..), and

GetSolarRadiationAndWindspeed(…)

o Handles constructing the table and line graph containing requested weather data

• requestHandlers.js

o Either reqSolarRadiation(…), reqWindSpeed(…) or

reqSolarRadiationAndWindSpeed(…) request handler is called depending on client’s

submitted Weather Search Form selection.

All of three request handlers will generally perform these operations

▪ Call LoadDataFromWebsite(…) from loadData.js

▪ Call GetSolarRadiation(…), GetWindSpeed(..) or both from

windSpeedCalculation.js and solarRadiationCalculation.js respectively

▪ Return JSON string containing client’s requested weather data to

SearchFormFrontEnd.js via $.post(…) call-back function

o The importance for the requestHandler file is to provide a place where when a

resource is requested by a client or browser, often through URL, an appropriate

response is provided by server

• loadData.js

o Responsible for accessing appropriate weather data files and extracting the year

weather data into JavaScript object

o Contains LoadDataFromWebsite(…) and this function determines whether to load

data from web XML or JSON document depending on client selected year

o Contains LoadJSONFromWebsite(...) and LoadXMLFromWebsite(…) responsible for

accessing the weather data file from web and converting it to JavaScript object.

These two function will also call LoadDataFromLocalFile(…) if network is unreachable

o Once extracted to JavaScript object a callback is executed sending JavaScript object

back to reqSolarRadiation(…), reqWindSpeed(…) or

reqSolarRadiationAndWindSpeed(…) request handler in requestHandlers.js

o The importance of a separate loadData.js is firstly to make code easier to read and

understand. So, any modifications to loading data can be located in one file making

modification to existing code easier especially when the code base gets larger.

• windSpeedCalculation.js & solarRadiationCalculation.js

o Both the files’ handles their respective calculation the function(s) that start the

calculations are - GetSolarRadiation(…), GetWindSpeed(..)

▪ Total Monthly Solar Radiation and Average Monthly Windspeeds

o In order to get their respective calculation, the data needs to extracted from the

JavaScript object and then processed

o The importance of both files is to ensure server-code is modular in design and single

responsibility principle is maintained. Also only the GetSolarRadiation(…),

GetWindSpeed(..) are exposed to the client. The other functions are only accessible

to the functions inside the file so file remains tightly encapsulated and abstraction is

promoted by hiding implementation. This increased readability

• windSpeedDatabase.js & solarRadiationDatabase.js

o This file contains a class that encapsulates the map data structure that stores the

windspeed/solarRadiation records

o Ensures that records are added in a controlled way this is seen in AddRecord(…)

function. This is responsible for adding to the map

o The creation of both files makes sure the client can’t accidentally add a single record

to the month key and override the array already associated to the month key

• databaseUtilities.js

o Contains functions that are utility/helper functions for database class meaning it is

reusable for both windSpeedDatabase.js & solarRadiationDatabase.js

o The file contains functions that are not appropriate to be placed with

utilitiesFunctions.js since that file is for general functions that can be used in

multiple scenarios. For example, CalcAverage

o The creation of a standalone database utilities encourages code reuse providing

functionality to both windSpeedDatabase.js & solarRadiationDatabase.js

• utilitiesFunctions.js

o This file contains utility/helper functions that are reusability in many different

scenarios even in situations not related to the assignment context

o The file was created to encourage reusability as well as ensuring the general

functions were not tied another files code such as requestHandler.js code. Had the

utility functions been defined there then in order for other files to access the

functions we would need to expose the requestHandler.js file thus breaking file

encapsulation

4) Description of data structures and why

Role of array:

The array structure was used heavily in this assignment. An array stores its elements in contiguous

memory which means every element will be located close to each other. This means when every

element in the data structure needs to be accessed the array is efficient. There were many instances

where a lot of data had to be stored in a data structure, order of the data did not matter, and every

element in the data structured had to be accessed. The mathematical calculations functions such as-

CalcTotal and CalcAverage was where an array was most appropriate. In this case, the calcTotal

would take an array as the parameter. Order in the array did not matter and every element would

need to be accessed since the total is basically calculating the total of all the elements in the array.

Thus, for this situation the use of array is best since it provides best time complexity for accessing

every element with a time complexity always performed at O(1).

Role of windSpeedDatabase.js and solarRadiationDatabase.js:

Both of the files encapsulate a map data structure. The reason for the encapsulation is the need to

provide controlled access or more specifically controlled insertion of data. The general format for

the encapsulated map data structure is <MonthNumber, ArrayofData[]>. The class ensure that when

a new record is added to the data structure the record gets added to the array associated with the

correct month key. We also want the client to be able to accidentally override a month key with just

one record thereby deleting the entire array of records associated with month key. This is where

encapsulating the data structure comes in to assist. Allowing the class to be responsible for this

eliminates the need for code duplication of the complex insertion process. The reason why having an

array of data values for a month is appropriate is because a month can contain many data values.

Also, the processing required such as calculating total solar radiation (per month) required all

elements for a month to be accessed.

The map data structure was also used in this assignment in the windSpeedDatabase and

solarRadiationDatabase class. The map provided the following-

• The keys were the months in a year which is unique

• Allowed for the value that was paired with the month key to be an array of data for that

month (key)

• The map keeps the orders of the keys preserved

Role of result data structure:

Finally the var result = {}; data structure in reqSolarRadiation(…), reqWindSpeed(…) or

reqSolarRadiationAndWindSpeed(…) in requestHandlers.js file was the last data structure used to

return the requested information for the specified timeframe back to client. The result data

structure had to be a JavaScript object so ES6 map was not allowed. The form of the result data

structure was the following

{ws: [avgMonthlyWindSpeedVal1, avgMonthlyWindSpeedVal2 …]

sr: [totalSRMonth1, totalSRMonth2, …] }

Where the ws and sr were the keys and the values was an array of calculated results for nominated

time frame as per the specifications. When a month inside time frame had no value, the element

was represented in the array as “”. The result data structure was stringify in order to send it to the

front end via AJAX.

5) Feature testing table (refer to conclusion to see how the test are relevant to specific

requirements)

Evidence is found here-

https://www.youtube.com/playlist?list=PLUktbenWQI5iisFuY0Z6Rf7HxU_hAEO2G

Te
st

Test objective(s) Test steps Expected results Pass/
fail

Evidence
(video
title)

1 Validate ability to
correctly graph wind
speeds

Go to
http://ceto.murdoch.edu.au:40004/
Select WindSpeed only
Select graph format only
Fill out search form-
Year: 2014
Timeframe: Feb to Aug

Displays graph with wind
speed(s) plotted-
Feb
Mar 20.28
Apr 13.71
May 17.08
Jun 4.65
Jul 12.71
Aug 18.97

Pass
(Test Case
validate
ability to
correctly
graph)

2 Validate ability to
correctly graph solar
radiations

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations only
Select graph format only

Displays graph with solar
radiations(s) plotted-
May 104.89
Jun 75.14

Pass (Test Case
validate
ability to

https://www.youtube.com/playlist?list=PLUktbenWQI5iisFuY0Z6Rf7HxU_hAEO2G
http://ceto.murdoch.edu.au:40004/
http://localhost:40004/

Fill out search form-
Year: 2008
Timeframe: May to June

 correctly
graph)

3 Validate ability to
correctly graph both solar
radiations and
windspeeds

Go to
http://ceto.murdoch.edu.au:40004/
Select both solar radiations and
windspeed
Select graph format only
Fill out search form-
Year: 2012
Timeframe: Jan to Dec

Displays graph with solar
radiations(s)-
Jan 219.44
Feb 201.73
Mar 209.17
Apr 127.99
May 103.54
Jun 62.29
Jul 100.71
Aug 119.36
Sep 155.61
Oct 201.50
Nov 223.16
Dec 244.69
Displays graph with wind
speed(s) plotted-
Jan 27.14
Feb 22.41
Mar21.49
Apr 16.77
May 15.22
Jun 19.92
Jul 12.73
Aug 14.89
Sep 21.97
Oct 21.19
Nov 21.49
Dec 19.88

Pass (Test Case
validate
ability to
correctly
graph)

4 Validate ability to
correctly create table of
wind speeds

Go to
http://ceto.murdoch.edu.au:40004/
Select WindSpeed only
Select table format only
Fill out search form-
Year: 2014
Timeframe: Feb to Aug

Displays table with-
 ws (km/h)
Jan
Feb
Mar 20.28
Apr 13.71
May 17.08
Jun 4.65
Jul 12.71
Aug 18.97
Sep
Oct
Nov
Dec

Pass (Test Case
validate
ability to
correctly
create
table)

5 Validate ability to
correctly create table of
solar radiations

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations only
Select table format only
Fill out search form-
Year: 2010
Timeframe: Feb to Mar

Displays table with-
 sr (kWh/m^2)
Jan
Feb 188.33
Mar 182.45
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Pass (Test Case
validate
ability to
correctly
create
table)

6 Validate ability to
correctly create table of
both wind speeds and
solar radiations

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations and wind speeds
Select table format only
Fill out search form-
Year: 2010
Timeframe: Feb to Mar

Displays table with-

ws (km/h) sr (kWh/m^2)

Jan
Feb 21.50 188.33
Mar 20.60 182.45
Apr
May
Jun
Jul

Pass (Test Case
validate
ability to
correctly
create
table)

http://localhost:40004/
http://localhost:40004/
http://localhost:40004/
http://localhost:40004/

Aug
Sep
Oct
Nov
Dec

7 Validate ability to both
correctly graph & create
table of wind speed

Go to
http://ceto.murdoch.edu.au:40004/
Select WindSpeed only
Select graph format and table format
Fill out search form-
Year: 2014
Timeframe: Feb to Aug

Displays graph with wind
speed(s) plotted-
Feb
Mar 20.28
Apr 13.71
May 17.08
Jun 4.65
Jul 12.71
Aug 18.97

Displays table with-
 ws (km/h)
Jan
Feb
Mar 20.28
Apr 13.71
May 17.08
Jun 4.65
Jul 12.71
Aug 18.97
Sep
Oct
Nov
Dec

Pass (Test Case
validate
ability to
both
correctly
graph &
create
table)

8 Validate ability to both
correctly graph & create
table of solar radiation

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations only
Select table format and graph format
Fill out search form-
Year: 2010
Timeframe: Feb to Mar

Displays table with-
 sr (kWh/m^2)
Jan
Feb 188.33
Mar 182.45
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Displays graph with solar
radiations(s) plotted-
Feb 188.33
Mar 182.45

Pass (Test Case
validate
ability to
both
correctly
graph &
create
table)

9 Validate ability to both
correctly graph & create
table of solar radiation &
wind speed

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiation and wind speed
Select table format and graph format
Fill out search form-
Year: 2010
Timeframe: Feb to Mar

Displays table with-

 ws (km/h) sr(kWh/m^2)

Jan
Feb 21.50 188.33
Mar 20.60 182.45
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Displays graph with solar
radiations(s) plotted-
Feb 188.33
Mar 182.45

Pass (Test Case
validate
ability to
both
correctly
graph &
create
table)

http://localhost:40004/
http://localhost:40004/
http://localhost:40004/

Displays graph with wind
speed plotted-
Feb 21.50
Mar 20.60

10 Validate application is a
single page application

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiation and wind speed
Select table format and graph format
Fill out search form-
Year: 2009
Timeframe: Feb to Sep
Submit

Change Year: 2011
Submit

Current page is rewritten
with new data from the
server and thus allows
client to submit more
searches without needing
to reload

.

Pass (Test Case
validate
SPA)

11 Validate there is a script
to start and control
application

node index.js Display in terminal-
Output server running
indicating application has
started

Pass (Test Case
validates
adopts
assignment
1 modular
server
application
structure)

12 Validate a script to start a
server

node index.js Display in terminal-
“Server running
http://ceto.murdoch.edu.
au:40004/”

Pass (Test Case
validates
adopts
assignment
1 modular
server
application
structure)

13 Validate there is a script
to route the different
client request to
appropriate request
handlers

Uncomment line 4 in router.js

Save router.js
Type node index.js
Go to
http://ceto.murdoch.edu.au:40004/

Display in terminal-
Server running
http://ceto.murdoch.edu.
au:40004/
Proces ID:
entered router(...)
router.js
entered reqStart(...) in
requestHandlers.js
entered router(...)
router.js
entered router(...)
router.js
entered
reqSearchFormFrontEndJs
(...) in requestHandlers.js

Pass (Test Case
validates
adopts
assignment
1 modular
server
application
structure)

14 Validate
searchSolarRadiation
request handler

Go to
http://ceto.murdoch.edu.au:40004/
Fill in valid search form with only solar
radiation measurement ticked

Display in terminal-
…
entered
reqSolarRadiation(...) in
requestHandlers.js
….

Pass (Test case
validate all
requestHan
dlers)

15 Validate
searchWindSpeed
request handler

Go to
http://ceto.murdoch.edu.au:40004/
Fill in valid search form with only wind
speed measurement ticked

Display in terminal-
…
entered
reqWindSpeed(...) in
requestHandlers.js
…

Pass (Test case
validate all
requestHan
dlers)

16 Validate
searchSolarRadiationAnd
WindSpeed request
handler

Go to
http://ceto.murdoch.edu.au:40004/
Fill in valid search form with both wind
speed and solar radiation measurement
ticked

Display in terminal-
…
entered
reqSolarRadiationAndWin
dSpeed(...) in
requestHandlers.js
…

Pass (Test case
validate all
requestHan
dlers)

http://localhost:40004/
http://localhost:40004/
http://localhost:40004/
http://localhost:40004/
http://localhost:40004/

17 Validate mainStyleSheet
request handler

Go to
http://ceto.murdoch.edu.au:40004/mai
nStyleSheet

Output main.css code on
browser

Pass (Test case
validate all
requestHan
dlers)

18 Validate
searchFormFrontEnd
request handler

Go to
http://ceto.murdoch.edu.au:40004/
searchFormFrontEnd

Output
searchFormFrontEnd.js
code on browser

Pass (Test case
validate all
requestHan
dlers)

19 Validate
searchFormValidator
request handler

Go to
http://ceto.murdoch.edu.au:40004/sear
chFormValidator

Output
searchFormValidator.js
code on browser

Pass (Test case
validate all
requestHan
dlers)

20 Validate the ability to
download (at runtime)
the user nominated XML
File

Go to
http://ceto.murdoch.edu.au:40004
Select WindSpeed only
Select table format only
Fill out search form-
Year: 2009
Timeframe: Feb to Aug

Display in terminal-

…
entered
LoadXMLFromWebsite(...)
in loadData.js
…

Pass (Test Case
download
weather
data or load
local files)

21 Validate defaults to
locally stored XML file if
network (i.e. sphinx
website) is unreachable

Edit loadData.js line 13
Change
const websitePath =
“http://sphinx.murdoch.edu.au/~20010
930/CT375/”
Save to emulate network down

Go to
http://ceto.murdoch.edu.au:40004
Select WindSpeed only
Select table format only
Fill out search form-
Year: 2009
Timeframe: Feb to Aug

Display in terminal-

…
entered
LoadDataFromLocalFile(...
) in loadData.js
…

Pass (Test Case
download
weather
data or load
local files)

22 Validate the ability to
download (at runtime)
the user nominated JSON
File

Go to
http://ceto.murdoch.edu.au:40004
Select solar radiation only
Select table format only
Fill out search form-
Year: 2016
Timeframe: Feb to Aug

Display in terminal-
…
entered
LoadJSONFromWebsite(...
) in loadData.js
…

Pass (Test Case
download
weather
data or load
local files)

23 Validate defaults to
locally stored JSON file if
network (i.e. sphinx
website) is unreachable

Edit loadData.js line 13
Change
const websitePath =
“http://sphinx.murdoch.edu.au/~20010
930/CT375/”
Save to emulate network down

Go to
http://ceto.murdoch.edu.au:40004
Select solar radiation only
Select table format only
Fill out search form-
Year: 2016
Timeframe: Feb to Aug

Display in terminal-
…
entered
LoadDataFromLocalFile(...
) in loadData.js
…

Pass (Test Case
download
weather
data or load
local files)

24 Validate data structures
used to store extracted
data for windspeeds of
nominated time frame

Go to
http://ceto.murdoch.edu.au:40004/
Select WindSpeed only
Select table format only
Fill out search form-
Year: 2016
Timeframe: Feb to Apr

Display in terminal a map
with only key 2, 3 both
with array of values

Pass (Test Case
data
structure
used to
store
extracted
data)

25 Validate data structures
used to store extracted
data for solar radiations
of nominated time frame

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations only
Select table format only
Fill out search form-
Year: 2016
Timeframe: Feb to Apr

Display in terminal a map
with only key 2, 3 both
with array of values

Pass (Test Case
data
structure
used to
store
extracted
data)

http://sphinx.murdoch.edu.au/~20010930/CT375/
http://sphinx.murdoch.edu.au/~20010930/CT375/
http://sphinx.murdoch.edu.au/~20010930/CT375/
http://sphinx.murdoch.edu.au/~20010930/CT375/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/

26 Validate wind speed
calculations data
structure is sent back to
client (AJAX)

Go to
http://ceto.murdoch.edu.au:40004/
Select WindSpeed only
Select table format only
Fill out search form-
Year: 2014
Timeframe: Feb to Apr

Display in terminal-
{ ws: ['', '20.28', '13.71'] }
Display in browser-
ws: Array(3)
0: ""
1: "20.28"
2: "13.71"

Pass (Test case
data
structure
sent to
client AJAX)

27 Validate solar radiations
data structure is sent
back to client (AJAX)

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations only
Select table format only
Fill out search form-
Year: 2011
Timeframe: Mar to Jun

Display in terminal-
{ sr: ['207.39', '144.16',
'107.07', '71.74'] }

Display in browser-
sr: Array(4)
0: "207.39"
1: "144.16"
2: "107.07"
3: "71.74"

Pass (Test case
data
structure
sent to
client AJAX)

28 Validate wind speed and
solar radiation data
structure is sent back to
client (AJAX)

Go to
http://ceto.murdoch.edu.au:40004/
Select solar radiations and wind speed
Select table format only
Fill out search form-
Year: 2016
Timeframe: Feb to Apr

Display in terminal-

{ sr: ['225.45', '0.96', ''],
ws: ['20.58', '9.03', ''] }

Display in browser-
sr: Array(3)
0: "225.45"
1: "0.96"
2: ""
ws: Array(3)
0: "20.58"
1: "9.03"
2: ""

Pass (Test case
data
structure
sent to
client AJAX)

29 Validate server calculates
wind speed calculations
from XML document
correctly for given time
frame

Go to (Microsoft Edge)
http://ceto.murdoch.edu.au:40004/
Select wind speed
Select table format only
Fill out search form-
Year: 2008
Timeframe: Jan to Dec

Display in terminal-
{
 ws: [
 '24.85', '44.56',
 '43.94', '40.94',
 '44.26', '32.70',
 '31.41', '20.04',
 '33.36', '37.38',
 '38.53', '45.23'
]
}

Pass (Test Case
validate
server
calculation)

30 Validates server
calculates wind speed
calculations from JSON
document correctly for
given time frame

Go to (Microsoft Edge)
http://ceto.murdoch.edu.au:40004/
Select wind speed
Select table format only
Fill out search form-
Year: 2014
Timeframe: Jan to Dec

Display in terminal-
{
 ws: [
 '9.95', '',
 '20.28', '13.71',
 '17.08', '4.65',
 '12.71', '18.97',
 '20.58', '18.89',
 '20.34', '21.74'
]
}

Pass (Test Case
validate
server
calculations
)

31 Validate server calculates
solar radiation
calculations from XML
document correctly for
given time frame

Go to (Microsoft Edge)
http://ceto.murdoch.edu.au:40004/
Select solar radiation
Select table format only
Fill out search form-
Year: 2009
Timeframe: Aug to Dec

Display in terminal-

{ sr: ['42.25', '48.44', '',
'99.14', '271.19'] }

Pass (Test Case
validate
server
calculations
)

32 Validate server calculates
solar radiation
calculations from JSON
document correctly for
given time frame

Go to
(Microsoft Edge)
http://ceto.murdoch.edu.au:40004/
Select solar radiation
Select table format only
Fill out search form-
Year: 2013
Timeframe: Mar to Oct

Display in terminal-
{
 sr: [
 '185.29', '118.69',
 '103.45', '87.77',
 '87.31', '109.31',
 '130.42', '201.42'
]
}

Pass (Test Case
validate
server
calculations
)

http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/

33 Client program is pleasant
with IPHONE SE

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to Iphone SE
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent

Pass (Test Case
application
works on
different
devices)

34 Client program is pleasant
with Samsung Galaxy S8+

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to Samsung Galaxy
S8+
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent

Pass (Test Case
application
works on
different
devices)

35 Client program is pleasant
with Ipad Mini

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to Ipad Mini
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent

Pass (Test Case
application
works on
different
devices)

36 Client program is pleasant
with Pixel 5

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to Pixel 5
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent

Pass (Test Case
application
works on
different
devices)

37 Client program is pleasant
with laptop

Go to
http://ceto.murdoch.edu.au:40004/
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent

Partial
pass
(not
aesthetically
pleasing)

(Test Case
application
works on
different
devices)

38 Client program is pleasant
with IPad Air

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to IPad Air
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent on any device

Partial
pass
(not
aesthetically
pleasing

(Test Case
application
works on
different
devices)

39 Client program is pleasant
with Surface pro 7

Go to
http://ceto.murdoch.edu.au:40004/
Change dimensions to Surface pro 7
Select wind speed and solar radiation
Select table and graph
Fill out search form-
Year: 2013
Timeframe: Jan to Dec

Program is aesthetically
pleasing, proportional and
consistent on any device

Partial
pass
(not
aesthetically
pleasing

(Test Case
application
works on
different
devices)

6) Conclusion

http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/
http://ceto.murdoch.edu.au:40004/

Achieved requirements-

Client program provides a table output (displays all months, even if some months have no data) and

a graphical output (displays user specified months only)

• Client program provides a table output (displays all months, even if some months have no

data) and a graphical output (displays user specified months only)

o Test #1 – Test #9

• A table output displays all months, even if some months have no data and a graphical output

displays user specified months only

o Test #7

Client program provides 4 appropriate gathering mechanisms to get user input (year, start and end

months, wind speed and/or solar radiation, and table and/or graph display).

• Client program provides 4 appropriate gathering mechanisms (year, start and end months,

wind speed and/or solar radiation, and table and/or graph display) to get user input

o Test #1 - Test #9

Client program presented in an aesthetically pleasing manner (using css). Must use of single page

application (i.e. AJAX). It is suggested that the client program uses three div’s. Top most div for input,

middle div for table output, and bottom most div for graphical output.

• Single page application for all client-side output

o Test #10

• Single page application uses AJAX for all client-side output

o Test #26, Test #27, Test #28

• Client program presented in an aesthetically pleasing manner (using css) mobile

o Test #33 – Test #36

• Client program works with different browsers (edge)

o Test #29 – Test #31

Server program (i.e. Node.js). Must follow the instruction from assignment 1 to make your

application modular in design. Must not use port 80; use the one given to you in week 1. Must

include all server-side scripts used in processing; these should be well organized in appropriate

directories. Also include the node_modules directory and any sub-directories (i.e. npm modules).

• Must follow the instruction from assignment 1 to make your application modular in design.

o A script to start and control the application

▪ Test #11

o A script to start a server (port)

▪ Test #12

o A script to route the different client request to appropriate request handlers

▪ Test #13

o Request handler for requesting solar radiation

▪ Test #14

o Request handler for requesting wind speed

▪ Test #15

o Request handler for requesting solar radiation & wind speed

▪ Test #16

o Request handlers for style sheet (resource)

▪ Test #17

o Request handlers for searchFormFrontEnd (resource)

▪ Test #18

o Request handlers for searchFormValidator (resource)

▪ Test #19

• Uses port 40004

o All the browser test cases show the use of this port never port 80

• The application is organised in appropriate directories according to the “Coding Standard

and File Organization”

Interface with sphinx URL; i.e. the ability to download (at runtime) the user nominated XML OR JSON

file for parsing and processing. Defaults to locally stored data files if network (i.e. sphinx website) is

unreachable.

• Interface with sphinx URL; i.e. the ability to download (at runtime) the user nominated XML

File

o Test #20

• Defaults to locally stored XML file if network (i.e. sphinx website) is unreachable

o Test #21

• Interface with sphinx URL; i.e. the ability to download (at runtime) the user nominated JSON

file

o Test #22

• Defaults to locally stored JSON file if network (i.e. sphinx website) is unreachable.

o Test #23

Data structures used to store extracted data. That is, arrays, associative arrays, objects, etc.

• Data structures used to store extracted data for windspeeds of nominated time frame

o Test #24

• Data structures used to store extracted data for solar radiations of nominated time frame

o Test #25

Use of XSLT, OR JSON equivalent, for processing on server-side to facilitate the display of formatted

table and graph (proportionately and consistent on any device).

Includes data retrieval (i.e. parsing) from XML OR JSON file. Also, application design (i.e. accessing

correct data and calculation of results required to be sent to the client for display). That is, all

components achieving the task of parsing and processing within the Node.js environment using XML

OR JSON technologies. This must be done on the server-side.

• Server returns the calculated average monthly windspeed for specified time frame back to

the client via JSON string (AJAX)

o Test #26

• Sever returns the total solar radiations per month for specified time frame back to client via

JSON string (AJAX)

o Test #27

• Server returns both calculated average monthly windspeed & total solar radiations per

month for specified time frame back to client via JSON string (AJAX)

o Test #28

• XML file parse and process for wind speed for nominated month in Node.js environment

o Test #29

• JSON file parse and process for wind speed for nominated month in Node.js environment

o Test #30

• XML file parse and process for solar radiation for nominated month in Node.js environment

o Test #31

• JSON file parse and process for solar radiation for nominated month in Node.js environment

o Test #32

• Application is consistent on any device and proportional and consistent on any device

o Test #33 – Test #39

The limitation with my assignment is the following-

• Parsing and processing XML document is slower than JSON document since an external

library xml2js is required to parse to JSON format

• When table outputs all months and their data the CSS does not look too aesthetically

pleasing on laptop. However, it is proportional and consistent for all devices. Also, since it

was designed with mobile first approach in mind it is aesthetically pleasing on mobile and

has no issues when output all months and their data

o Test #37

The highlights in my assignment are-

• I’ve added comments to describe my line of thinking and it illustrates that every decision

was well thought out. Also, the comments are useful in that often when we are asked to

review old code, we tend to forget why we did something. The comments answer those

questions

• CSS adopted a mobile first approach which is appropriate for modern user interfaces since

most people use mobiles to view sites. The site on mobile is pleasing

• SOLID principles were taken into consideration when designing the application especially

when extracting functions into new files in order to follow single responsibility principle.

o For example- windSpeedCalculation.js & solarRadiationCalculation.js. While a single

file could have stored both windSpeedCalculation.js & solarRadiationCalculation.js

that would break single responsibility because calculations had to handle two things

windSpeedCalculation and solarRadiationCalculation. Also, if somebody wants to

just use windSpeedCalculation then they are exposed to solarRadiationCalculation if

a single file was used

• My requestHandler.js was able to handle both request and response for all by utilizing

function callbacks to take it back to requestHandler.js

7) Additional information

